Global Occurrence and Economic Consequences of Stripe Rust in Wheat

Yuan Chai

Co-Authors: Philip Pardey, Jason Beddow, Terry Hurley, Darren Kriticos and Hans Joachim-Braun

University of Minnesota, CSIRO, and CIMMYT

Advancing Pest and Disease Modeling Workshop

February, 2015

Policy Questions regarding Crop Diseases

Wheat Rust Diseases

Wind Dispersal

Source: USDA CDL

Wheat Rust Diseases

Extent	 Occurring almost all wheat growing countries Spreading across continents
Frequency	 Increasing frequency in the last decade
Impact	 Stem Rust Ug99 Stripe Rust Yr9 and Yr27

Photo source: CIMMYT

AGRICULTURE

Right-Sizing Stem-Rust Research

P. G. Pardey,^{12,3,4*} J. M. Beddow,^{12,3} D. J. Kriticos,^{1,3,5} T. M. Hurley,^{1,2,3} R. F. Park,⁶ E. Duveiller,⁷ R. W. Sutherst,⁸ J. J. Burdon,³ D. Hodson⁷

Is increased support needed for wheat disease research to avert crop losses from current and future strains?

Stem Rust Losses in the U.S.

Author's calculation based on USDA CDL data

Stem Rust: Global Assessment Summary

• A sustained investment of \$51.1 million per year (2010 prices) in stem rust research could be justified economically

Stripe Rust Losses in the U.S. (by year)

4.5 3.5 % Loss 2.5 1.5 0.5

Stripe rust

Author's calculation based on USDA CDL data

Stripe Rust Losses in the U.S. (by state)

Pre-2000	Mainly the Pacific Northwest (PNW) region
Post-2000	PNW and central states

Author's calculation based on USDA CDL data

Expanding Geography of Stripe Rust

Data source: 2013 BGRI-HarvestChoice Survey

Stripe Rust

• Expanding Geography

- US: epidemics expand from PNW (pre-2000) to Central States (post-2000) (Chen 2005)
- CWANA: Yr9 and Yr27 driven epidemics since 1980s (Solh et al. 2012)
- South Africa: first report of stripe rust during 1996 (Pretorius et al. <u>1997)</u>
- Australia: annual \$40-90 million spent on fungicides (Wellings 2007)

• Aggressiveness / Increased Fitness

- Isolates collected since 2000 are better adapted at warmer temperatures (Milus et al. 2009)
- Other factors contributed to increased aggressiveness (Loladze et al. 2014)

Research Method

CLIMEX Model of Pests and Diseases

CLIMEX Pest Model

CLIMEX - Compare Locations (1 species)	
File Map Preferences Window Help	
🖻 📽 🖬 🖨 🖪 🖉 👭 🏢 🖿 📓 🐚 🌡 ங 💼 😵 🤭 🔍 🌂 🧣	
(
Model Components	
Locations World	Model CLIMEX - Compare Locations (1 species)
	Eeb 14 2015, 18:16
Climate Change Scenario No Climate Cha	Inge Parameter File C:\\Dymey\Models\Climey\Compare Locations (1 species) omp
Irrigation Not Set	Run Type Wultiple (World)
	CLIMEX - Compare Locations (1 species)
Puccinia striifor	mis Puccinia striiformis
	Run on Feb 14 2013 18:16
💷 Parameters: Puccinia striiformis 💿 📼 🔀	
Edit Comments Copy to Clipboard	
Moisture Index	
SM0 SM1 SM2 SM3	
0.2 0.7 1.5 2.5	
Temperature Index	
3 12 16 30	
☐ Light Index	
Diapause Index	
♥ Cold Stress	Nodel Output
TTCS THCS DTCS DHCS TTCSA THCSA	
E Heat Stress	
✓ Dry Stress	
SMDS HDS	
0.2 -0.005	111 1 2 - La alarge d
F Wet Stress	· Jos () · · · · · · · · · · · · · · · · · ·
Cold-Wet Stress	4 26 27 4
□ Hot-Dry Stress	A Straight Da
In the stress	CLIMEX - Compare Locations (1 species)
TTHW MTHW PHW	Puccinia striformis
	Run on Feb 14 2015 18:16
DV0 DV3 MTS	No Climate Change / rigitation: Not Set
3 30 7	
Day-degree accumulation above DVCS	
DVCS *DV4 MTS	
Bay-degree accumulation above DVHS	Basto 46
DVHS *DV4 MTS	55.2 to -64.4
25 100 7	
Degree-days per Generation	
PDD	
	AN NAMEST
Snacias Daramatars	

Modeled global climate suitability for stripe rust (Beta)

North America (Beta)

○ Reported

Sub-Saharan Africa (Beta)

Europe, North Africa and the Middle East (Beta)

Asia (Beta)

○ Reported

Research Method

Stochastic Structure of U.S. Losses Attributed to Stripe Rust

Loss Proportion

Research Method

15 Epidemiological Zones

- Following Saari and Prescott (1985), 15 Epidemiological Zones
 - Epidemic in each epidemiological zone occurs independently
- HavestChoices Spatial Allocation Model (SpAM)
 - 10 arc minute resolution: Output / Area / Yield

Estimate R&D benefits

Monte Carlo Simulation

Probabilistic Losses Attributable to Stripe Rust

Probability of Loss	Limited Area Extent (1961-1984)		Extended Area Extent (2000-2012)	
	Volume	Value	Volume	Value
(percentage)	(million tonnes)	(million \$US)	(million tonnes)	(million \$US)
90	≥ 0.65	≥ 172	≥ 4.40	≥ 1,170
50	≥ 0.79	≥ 209	≥ 5.22	≥ 1,389
20	≥ 0.88	≥ 235	≥ 5.82	≥ 1,549
5	≥ 0.98	≥ 262	≥ 6.42	≥ 1,718
Mean	Preliminary	Data:0	Dè No5	Quờtê,398

*Benchmarked relative to 1985-1999 U.S. losses

Research Investments Attributable to Rust

Economic justification:

Developing effective resistance through R&D investment is more beneficial than exposing susceptible wheat to rust epidemics

*In comparison, U.S. wheat farmers spent \$27.69 per hectare on seed in 2010

**Actual stem rust R&D spending is estimated less than half the amount, and stripe rust spending is even less than stem rust

Summary

- Rapid spread of stripe rust epidemics
 - Spatial expansion: almost 90 percent of the world's wheat production is susceptible to stripe rust
 - Frequency increase
 - Losses severe
- Our (beta) assessment suggests that around \$39 million per year be spent to alleviate global losses from string rust
 - About three quarters the corresponding stem rust research investment
 - Difference
 - Stem Rust: projected losses
 - Stripe Rust: observed losses

Future Work: Leaf Rust

Leaf Rust in the U.S.

Author's calculation based on USDA CDL data

Thanks

